Search results for "Tracking control"

showing 4 items of 4 documents

Trajectory robust control of autonomous quadcopters based on model decoupling and disturbance estimation

2021

In this article, a systematic procedure is given for determining a robust motion control law for autonomous quadcopters, starting from an input–output linearizable model. In particular, the suggested technique can be considered as a robust feedback linearization (FL), where the nonlinear state-feedback terms, which contain the aerodynamic forces and moments and other unknown disturbances, are estimated online by means of extended state observers. Therefore, the control system is made robust against unmodelled dynamics and endogenous as well as exogenous disturbances. The desired closed-loop dynamics is obtained by means of pole assignment. To have a feasible control action, that is, the fo…

QuadcopterDisturbance (geology)Computer sciencelcsh:Electronicslcsh:TK7800-8360Motion controllcsh:QA75.5-76.95Computer Science ApplicationsSettore ING-INF/04 - AutomaticaArtificial IntelligenceControl theoryTrajectorylcsh:Electronic computers. Computer scienceFeedback linearizationdisturbance estimation extended state observers feedback linearization Quadcopter tracking controlRobust controlSoftwareDecoupling (electronics)International Journal of Advanced Robotic Systems
researchProduct

Tracking control of network distributed systems in presence of variable time delay and loss of information

2006

This paper deals with the control of network distributed systems which has been at the centre of interest in a wide area of research in the last few year. The control of such systems is very difficult because the communication networks inevitably introduce variable time delays and possible lost of samples. In particular, it is proposed an extension of the approach, derived in the contest of the optimal stochastic regulator problem [1], [2], to the remote tracking problem considering a distributed control system in which the signals from the transducers to the controller and from the controller to the actuator are transmitted through a communication network with variable delays and possible …

Variable (computer science)Tracking controlnetwork distributed systemSettore ING-INF/04 - AutomaticaComputer scienceControl theoryDistributed computingReal-time computingDistributed control systemTimeoutOptimal controlActuatorTelecommunications network
researchProduct

Fuzzy Adaptive EKF Motion Control for Nonholonomic and Underactuated Cars with Parametric and non Parametric Uncertainties

2007

A new fuzzy adaptive motion control system including on-line extended Kalman''s filter (EKF) for wheeled underactuated cars with non-holonomic constraints on the motion is presented. The presence of parametric uncertainties in the kinematics and in the dynamics is treated using suitable differential adaptation laws. We merge adaptive control with fuzzy inference system. By using fuzzy system, the parameters of the kinematical controller are functions of the lateral, longitudinal and orientation errors of the motion. In this way we have a robust control system where the dynamics of the motion errors is with lower time response than the adaptive control without fuzzy. Also Lyapunov''s stabili…

EngineeringTRACKING CONTROLControl and OptimizationAdaptive controlbusiness.industryKalman filterFuzzy control systemMotion controlFuzzy logicMOBILE ROBOTSComputer Science ApplicationsHuman-Computer InteractionControl and Systems EngineeringControl theoryElectrical and Electronic EngineeringRobust controlbusinessParametric statistics
researchProduct

Tracking Control of Networked Multi-Agent Systems Under New Characterizations of Impulses and Its Applications in Robotic Systems

2016

This paper examines the problem of tracking control of networked multi-agent systems with multiple delays and impulsive effects, whose results are applied to mechanical robotic systems. Four kinds of impulsive effects are taken into account: 1) both the strengths of impulsive effects and the number of nodes injected with impulses are time dependent; 2) the strengths of impulsive effects occur according to certain probabilities and the number of nodes under impulsive control is time varying; 3) the strengths of impulses are time varying, whereas the number of nodes with impulses takes place according to certain probabilities; 4) both the strengths of impulses and the number of nodes with imp…

0209 industrial biotechnologyEngineeringTracking controlControl (management)02 engineering and technologyTracking (particle physics)robotic systems020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringmulti-agent systemsElectrical and Electronic EngineeringRobot kinematicsbusiness.industryStochastic processMulti-agent systemtime-delaysComputer Science Applications1707 Computer Vision and Pattern RecognitionControl engineeringRobotic systemsLeader-following consensusControl and Systems EngineeringControl systemLeader-following consensus; multi-agent systems; robotic systems; time-delays; Tracking control; Control and Systems Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic Engineering020201 artificial intelligence & image processingbusinessIEEE Transactions on Industrial Electronics
researchProduct